
  
Abstract— The well-known on/off relay-feedback identification 

test suffers from two imperfections. First, the parameters estimation 
does not bring a sufficient accuracy; second, a single test enables to 
quantify only two unknown model parameters. In this paper, two 
possible approaches dealing with these problems are attacked. 
Namely, the Autotune Variation Plus (ATV+) procedure introducing 
an additional artificial delay is utilized for a multiple-points model 
parameterization, and, the use of a saturation relay and a relay 
transient experiment with the Discrete Time Fourier Transform 
(DTFT) aid a better parameters estimation. The novelty of this 
contribution resides in that these methodologies are utilized with the 
combination with Linear Time-Invariant Time Delay Systems (LTI 
TDS) and their models. In our recent papers, theoretical aspects of 
the techniques were introduced and discussed, separately from other 
contributions dealing with a laboratory application of the saturation 
relay based approach. Both, theoretical and practical issues are 
summarized in this paper in a comprehensive presentation. 
 

Keywords— Autotuning, Fourier Transform, Heating system, 
Identification, Matlab/Simulink, Numerical optimization, Saturation 
relay, Time delay systems. 

I. INTRODUCTION 
UTOTUNING, in the parlance of the modern control theory, 
constitutes a set of methods which enable the controller 

to be tuned automatically based on a feedback test with a 
nonlinear element [1], [2]. In many cases, the test can serve to 
process model parameters identification or estimation (i.e. 
model parameterization), see e.g. [3], [4]. It is robust, easy to 
implement, timesaving, close-loop control which keeps the 
process close to the setpoint and it has been proved that it is a 
very useful tool in the industrial practice [5]. 

The original autotuning experiment proposition - sometimes 
called ATV (Autotune Variation) [5], [6] - designed in [1] 
utilizes the simple symmetrical on/off relay with the step-step 
static characteristics with the abrupt change around the zero 
point. It, however, suffers from some essential drawbacks: 
First, this basic test enables to estimate only a single point of 
the frequency characteristics (i.e. to identify two plant model 
parameters). Second, since the relay output has the form of 
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rectangular waves that are, subsequently, analyzed using the 
Fourier series expansion into a sum of harmonic signals, this 
linear approximation is far from to be exact and from the ideal 
sinusoidal shape. For instance, there is an error of 23% for a 
first order unstable system with dominant input-output delay 
[7]. Last but not least, as mentioned above, a simple on/off 
relay has an abrupt change around zero input, which means 
that the actuator is burden with frequent limit changes (which 
can be undesirable behaviour mainly for mechanical systems). 

Hence, many advanced techniques, which should eliminate 
the above mentioned deficiencies, have been developed [2], 
[5]. Some of them have been used in our research and are 
presented in this contribution. Namely, plant model 
parameters identification is improved by the use of two 
techniques. The first one is the application of a saturation 
relay [5], [8]. The second one utilizes the relay transient with 
DTFT [9], [10]. The advantage of the latter method is that 
arbitrarily many points on the Nyquist curve can be estimated 
by a single test. The use of the saturation relay, in this paper, 
is followed by the so-called Autotune Variation Plus (ATV+) 
procedure [11] - [13] which is based on the insertion of an 
artificial (additional) delay element into the open loop – It 
serves as a tool for finding multiple matching points on the 
frequency characteristics. 

These all techniques are known (even though not very 
well); however, the novelty of this contribution is the 
combination of them with models of LTI TDS. Time-delay 
systems mean a family of processes and systems including 
delays as a part of their dynamics (besides integrators and 
derivatives) [14] - [16], and they can be found all around us, 
not only in industry, but also in economy, biology, etc. Since 
they belong to the class of infinite-dimensional systems, i.e. 
with an infinite spectrum with infinitely many modes, it is not 
easy to analyze and control them [16], [17]. 

Hence, we introduce here basic theoretical facts about LTI 
TDS and parameter identification of their models via the 
above mentioned methodologies and, consequently, the 
derived results are verified and benchmarked by simulations 
as well as by real experiments and measurements on a circuit 
heating laboratory plant with significant internal (state) delays 
[18], [19]. This paper summarizes and extends by real data 
some preliminary theoretical and simulation results published 
in [20]. There are many new outcomes and facts to be found 
in this contribution. 

The paper is organized as follows. A general input-output 
model of LTI TDS is concisely introduced in Section II. 
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Fundaments and the idea of the basic relay autotuning and 
identification is the issue Section III. In Section IV, advanced 
techniques of the relay autotuning, namely, the use of a 
saturation relay, implementation of a relay transient and the 
utilization of an additional artificial delay are briefly 
described. The evaluation of the relay feedback test data and 
some its computational and numerical aspects is the matter of 
Section V. Section VI provides a mathematical model of the 
laboratory plant for a benchmark and verification together 
with a simplified LTI TDS model for relay experiments, and 
the derivation of eventual formulas for model parameters 
calculations. Finally, simulation and real experimental results 
of plant model parameterization are presented in Section VII. 

II. LTI TDS MODEL 
LTI TDS are assumed to contain delay elements not only in 

input-output relations in an LTI system or model but also in its 
dynamics, which can be modeled by applying both integrators 
and delay elements either in lumped or distributed form on the 
left side of a differential equation. Thus, it is no longer 
ordinary but functional. Theory, models, analyses and/or 
applications of these systems can be found e.g. in [15], [16], 
[21] - [23] etc. Obviously, such systems or models are 
infinite-dimensional due to their infinite spectrum. 

The input-output representation (map) of an LTI TDS, 
which is suitable for the sake of this paper, can be expressed 
in the form of a transfer function as a result of the application 
of the Laplace transform on a particular functional differential 
equation: 

 

( ) ( )
( )sa
sbsG =  (1) 

 
where ( )sa  expresses a quasipolynomial of degree n and 
quaipolynomial ( )sb  can be factorized as 

( ) ( ) ( ) 0,exp0 ≥−= ττssbsb  where ( )sb0  is a 
(quasi)polynomial of degree nl ≤  of the general form 
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The reader is referred e.g. to [16] for some other general LTI 
TDS models in the state space and input-output maps. 

III. SIMPLE RELAY FEEDBACK AUTOTUNING TEST 
The nascence of autotuning is linked up with the very famous 
work of Ziegler and Nichols [24] where, besides the 
proportional-integral-derivative (PID) controller tuning rule, 
an interesting identification procedure based on the 
information on the critical gain and the critical frequency was 
introduced. This is often referred to as the trial-and-error 
procedure. Historically, other methodologies were 
investigated as well, for example, the Cohen-Coon method 
[25], which requires an open-loop test on the process and it is 

thus inconvenient to apply. The disadvantage of other 
methods is e.g. the need of large setpoint change, see details in 
[2]. 

A. Relay Feedback Experiment 
The relay feedback autotuning (identification) test 

performing limit cycle oscillations was successfully applied to 
the autotuning of PID controllers in [1] and it is widely used 
and in practice as a well applicable technique. It is robust, 
easy to implement, timesaving, easy to use and close-loop 
control which keeps the process close to the setpoint. The 
classical relay-feedback loop scheme with a symmetrical 
on/off relay is depicted in Fig. 1. 
 

 
Fig. 1 Basic relay feedback experiment scheme  

 
If the process is stabilizable and has a phase lag of at least π  

radians, the process input ( )tu  and output ( )ty  are logged 
until the system reaches stationary oscillations, the amplitude 
A of error ( )te  equals the amplitude of ( )ty  and the overall 
phase shift between ( )te  and ( )ty  is –π. Hence, the ultimate 
period uT  is obtained from oscillations, which gives the 
information about the critical point, together with the ultimate 
gain which is approximately given by 

 

( )
A
BARku π

4==  (3) 

 
where B is the relay amplitude. The ultimate (critical) 
frequency is close to the value of uu T/2πω = . Formula (3) 
comes from the linearization of the relay output via Fourier 
series approximation when upper harmonic components of the 
signal are neglected, since a relay is a non-linear element and 
it can be linearized for linear theory approaches, details can be 
viewed e.g. in [5]. 

B. Process Model Parameters Estimation 
The relay feedback experiment can be utilized for model 

parameters identification. Let ( )sG  be the controlled system 
(model) transfer function and )(AR  the describing 
(linearized) function of a relay (or a nonlinear element, in 
general), then for sustained oscillation holds  
 

j01)j()( +−=uGAR ω  (4) 
 
or equivalently 
 

[ ] πωω −== )j()(arg,1)j()( uu GARGAR  (5) 
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which describes one point at the open-loop Nyquist plot 
giving rise to the estimation of two plant model parameters by 
the solution of it. Nevertheless, as mentioned above, an 
estimation of two or more points requires using a special 
technique. 

Dominant input-output delay, say τ , can be estimated as a 
time lag between the change of ( )tu  and the maximum 
(minimum) value of ( )ty  within the period, see Fig. 2. 
 

 
 Fig. 2 Limit cycles and dominant delay estimation 

IV. ADVANCED RELAY FEEDBACK EXPERIMENTS 
Now, some techniques which improve the plant model 

parameterization and/or enable to estimate multiple frequency 
points are introduced. 

A. Multiple Parameters Estimation – Artificial Delay 
As mentioned above, an estimation of two or more points 

requires using a special technique. For instance, an analytic 
expression and evaluation of some quantities in input and 
output signals was introduced in [26], [27], a decomposition 
into transient and stationary cycle parts followed by the 
discrete Fourier transform (DFT) or DTFT, more precisely, or 
the fast Fourier transform (FFT) can be found in [7], a 
utilization of a damping element with DTFT in [10], or 
inserting of an integral or a delay element into the open loop 
was the topic e.g. of [11], [12], [28], to name just a few 
methods. 

In this paper, the use of an additional (artificial) delay, i.e. 
the ATV+ technique, element into the feedback loop is 
utilized. The first step of the ATV+ procedure is a standard 
relay test. The second step introduces an artificial delay +τ  
between the relay and the process. 

The overall phase shift is –π, however only a part of this is 
attributed to the process, as +τ  is characterized by the phase 
leg += τωφ uD

~  where uω~  is a new ultimate frequency. The 
new amplitude Ã of the output can be read as well. Every next 
setting of +τ  determines one point of the Nyquist curve, 
hence, one needs to set the number ⎡ ⎤12/ −n  of various 

values of +τ  where n  is the number of unknown model 
parameters. 

In [11] the following setting was suggested 
 

uω
πτ

12
5=+  (6) 

 
where uω  means the ultimate frequency with no artificial 
delay. 

B. More Accurate Parameters Estimation – Saturation 
Relay 

Model parameters estimation can be improved by the use of 
a saturation relay [5], [8], the static characteristics of which is 
depicted in Fig. 3. 

 

 
Fig. 3 Static characteristics of a saturation relay 

 
Its advantage lies in the feature that relay output is not 

stepwise (i.e. with an abrupt slope change at the zero point), 
but it provides a smooth transient around the zero point. The 
relay input signal ( )te  is multiplied by k up to the limit value 

AkB =  of ( )tu , hence ( )tu  is ideally in the form of a 
harmonic waves with an upper and lower limit. The output of 
the nonlinear element ( )tu  looks like a truncated sinusoidal 

wave, as can be seen in Fig. 4. The meaning of A  is clear 
from the figure. 

 

 
Fig. 4 Feedback signals with a saturation relay 
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Obviously, the ideal case is that when ( )tu  has the shape of 

( )te  while AA = , where A  is the amplitude of ( )te . In this 
case, the ultimate gain equals the value of k  exactly. Another 
limit case arrives when ∞→k , which agrees with the 
classical on/off relay. 

The describing function of the relay can be obtained from 
the Fourier series expansion and neglecting higher harmonic 
parts of ( )tu  and ( )te  as follows 
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Hence, the aim is to find k  (or equivalently A ) such that 

AA ≈  for a given B, which provides the almost exact critical 
gain estimation. However, there is also a potential problem 
that can make the test fail. If the slope of the static 
characteristics k  is too small, or equivalently, if AA > , limit 
cycles may not exist. To avoid this, there has been proposed a 
two-step procedure finding a rough estimation of the lower 
bound on k , say mink , followed by a saturation relay test [5], 
[8]: 

Algorithm 1 (Saturation relay experiment) 
1) Select the height B  of the relay (i.e. of the manipulated 

input). 
2) Use an ideal on/off relay (or set the slope of a saturation 

relay to a large value ∞→k ) to estimate uk  according to (3). 
Set Chyba! Objekty nemohou být vytvořeny úpravami 
kódů polí.. 

3) Calculate the slope of the saturation relay min4.1 kk = . 
4) Use the saturation relay with calculated k. 
5) Find uω  from the relay feedback test and compute the 

ultimate gain from (7). 

C. Use of a Relay Transient 
Some approaches can make improve both, the model 

parameters estimation and the number of possibly identified 
model parameters (even under a single test). The procedure 
proposed in [10] uses a relay transient with the DTFT (FFT) 
evaluation. Its summary follows. 

Using a standard relay test, ( )tu  and ( )ty  are recorded 
from the initial time until the system reaches a stationary 
oscillation and they are subjected to exponential decaying 
according to 

 
( ) ( ) ( ) ( ) ( ) ( )attytyattutu −=−= exp,exp  (8) 
 
Obviously, ( )tu  and ( )ty  will decay to zero for 0>a  and 

∞→t . 
The Fourier transform applied to (8) results in 
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Values of functions ( )ωjU  and ( )ωjY  can be computed at 

discrete frequencies with DTFT as 
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where T  is the sampling interval, N  means the number of 
samples and ( )TNt f 1−=  expresses the final time for which 

the value of ( )tu  (or ( )ty ) is sufficiently small. Usually, 
2/Nm =  and ( )NTll /2πω = , see e.g. [7]. If, moreover, 

∈= nN n ,2 N (where N means a set of natural numbers), then 
the standard FFT can be used for faster computing. 

V. RELAY FEEDBACK TEST EVALUATION 
The data from relay experiments ought to be suitable 

evaluated. An overview of methodologies and numerical tools 
used in our research follows. 

A. Frequency Domain Solution 
Plant model parameters can be estimated directly using (4) 

and (5) with respect to describing functions (3) or (7). In a 
case of the using of artificial delay, these formulas are 
considered for every single test separately (i.e. with "new" 
values of uA ω, ). 

If the relay transient is performed, the direct calculation is 
provided by the evaluation of (10) for every single value of 

lω . 
Both the procedures yield sets of nonlinear algebraic 

equations. 

B. Time Domain Solution 
In [29] a methodology for limit cycles data evaluation 

based on a time-domain description instead of frequency one 
was introduced. 
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The idea comes from the fact that rectangular (for an on/off 
relay) or truncated sinusoidal (for a saturation relay) waves on 
a plant input (i.e. relay output) can be viewed as sinus waves 
in the lights of linearization (3) or (7). 

 Hence, if the artificial delay is not used, it is possible to 
write 
 

( ) ( ) ( )utAARtu ωsin≈  (12)  
 
Since neither the ideal nor the saturation relay evokes a 

phase shift, a plant output is given by 
 

)sin()( utAty ω−≈  (13) 
 

i.e. )cos()( uu tAty ωω−=′ , )sin()( 2
uu tAty ωω=′′  etc. which is 

then inserted to a model differential equation. Subsequently, 
appropriate fixed time values are chosen which yields a set of 
nonlinear algebraic equations for the unknown model 
parameters again. 

The use of the ATV+ gives rise to a phase lag Dφ , i.e.  
 

),...~sin(~~)(~
)~cos(~~)(~),~sin(~)(~

2
Duu

DuuDu

tAty

tAtytAty

φωω

φωωφω

+=′′

+−=′+−=
 (14) 

 
where A~  is the amplitude of perpetual oscillations of )(~ ty  for 
an additional delay element. 

Again, these expressions are inserted to the appropriate 
model differential equation with two selected values of t  for 
every addition delay test. 

C. Numerical Aspects 
Due to, generally, an ill-conditioned set of nonlinear algebraic 
equations obtained from approaches introduced above and 
because of multimodality of its solution [29], it would be 
useful to solve the equations by some advanced methods. For 
the objective of this research paper we have utilized three 
methods. Namely, the well-known Levenberg-Marquardt 
(LM) method (which is close to the Gauss-Newton one), see 
e.g. [30], the Nelder-Mead (NM) algorithm belonging to the 
class of comparative (direct search) algorithms, also called 
irregular simplex search algorithm, originally published in 
[31], and a standard Microsoft Excel (MS) Solver. 

VI. HEATING PLANT MODELS AND CONDITIONAL EQUATIONS 
FOR IDENTIFICATION 

As a benchmark and testing example, a laboratory circuit 
heating plant with both internal and input-output delays serves 
as a benchmark process the model parameters of which are to 
be identified. The appliance was assembled at the Faculty of 
Applied Informatics, Tomas Bata University in Zlín, Czech 
Republic [18]. A photo and a sketch of the scheme of it are 
displayed in Fig. 5. 
 

 
Fig. 5 Laboratory heating appliance with delays 
 

Actually, heating systems are typical representatives of 
time-delay systems, see e.g. [32]; however, what is unordinary 
in our case is that the model includes a circuit leading to 
internal (state) delays. 

Let us introduce a description of the plant that can be found 
e.g. in [18]: The heat transferring fluid (namely distilled 
water) is transported using a continuously controllable DC 
pump into a flow heater with maximum power ( )tPH  of 750 
W. The temperature of a fluid at the heater output is measured 
by a platinum thermometer giving value of ( )tHOϑ . Warmed 
liquid then goes through a 15 meters long insulated coiled 
pipeline which causes the significant delay in the system. The 
air-water heat exchanger (cooler) with two cooling fans 
represents a heat-consuming appliance. The speed of the first 
fan can be continuously adjusted, whereas the second one is of 
on/off type. Input and output temperatures of the cooler are 
measured again by platinum thermometers giving ( )tCIϑ  and 

( )tCOϑ , respectively. The expansion tank compensates for the 
expansion effect of the water. 

A. Mathematical Models 
A rigorous mathematical model of the appliance was 

presented in [19]. Although there are three continuous-time 
manipulated inputs ( ( )tPH , voltage input to the pump, ( )tuP , 
and voltage input to the cooler, Chyba! Objekty nemohou 
být vytvořeny úpravami kódů polí.) and three measured 
outputs ( ( )tHOϑ , ( )tCIϑ , ( )tCOϑ ), the intention here is to 
control ( )tCOϑ  only by means of ( )tPH . For this relation, it 
was derived the following transfer function 
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It was determined that for the working point 
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Consider model (17) as an "exact" system description for 

simulations below and let us introduce a simplified model for 
relay identification experiment. Hence, the simplified LTI 
TDS model reads 
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B. Conditional Equations for Identification 
1) Saturation relay with ATV+ : Frequency-domain 
solution 

Now the task is to find conditional equations for 
identification of model parameters (i.e. parameterization) by 
means of a relay feedback test with an on-off and saturation 
relay. There are five unknown real parameters in the model, 
i.e. ϑτ ,,,, 100 aab ; however, two of them can be estimated not 
from the knowledge of the ultimate gain and frequency. 
Namely, the static gain ( ) 0325.0/ 010 =+= aabk  can be 
calculated from the step-response, and the value of input-
output delay τ  can be estimated from Fig. 2. 

Hence, in the first step, a biased (asymmetrical) on/off relay 
with hysteresis is used to estimate these two parameters. Then, 
a simple (symmetrical) on/off followed by a saturation relay 
and the use of an artificial delay +τ  can be utilized to 
calculate the remaining parameters from (5) and (7). Four 
conditional equation can be obtained by doing this, therefore 
one may improve the estimation of k  or (preferably) τ . The 
use of a saturation relay yield 
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The use of the ATV+ results in 
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2) Saturation relay with ATV+ : Time-domain solution 

If we follow the idea of time-domain limit cycles data 
evaluation presented in Subchapter V-B, with a saturation 
relay and ATV+ again, the following results are obtained. 

Model transfer function (18) agrees with the functional 
differential equation 
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which implies from (12), (13) etc. 
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First, fix ( ) ,...1,0,21 == − llt u πω , and l be chosen so that 

{ }ϑτ ,max>t  and the limit cycle is stable (settled). Then 
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As second, let e.g. ( )( )πω lt u 25.01 += − , then 
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Analogously, the use of an additional delay element gives 

rise to the following conditions 
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Note that particular conditional equations for the relay 

transient are not presented here. They can be easily obtained 
by the direct calculation on (10) and separation the result into 
real and imaginary parts. 

VII. SIMULATION AND REAL EXPERIMENT RESULTS 
Finally, let us present both, Matlab/Simulink and real 

measurements, results of relay-feedback identification tests 
via methodologies introduced above.  

A. Simulations 
We attempted to simplify the original mathematical model 

(15) by the use of the relay-feedback experiment with model 
(18), thus, try to identify its parameters. 

1) Frequency-domain solution 
The relay test was performed with an on-off relay, 

]W[200=B , first, The results were the following: 
][9975.11 CA °= , ][8.3641, sTu = , which gives 

min1, 48.127 kku == , ( ) 0325.0/ 100 =+= aabk . Dead time was 
estimated in the accordance with Fig. 2 as 7.136=τ . Then we 
tried to perform the saturation-relay test with min2, 4.1 kku = ; 
however, the restoration of limit cycles took a long time and 
there was an obvious margin in the setting of the saturation 
relay. Thus, the option 426.123.1401.1 2min2, =⇒== Akku  

resulted in 4.3732, =uT , 9245.12 =A . These results enable to 
estimate two model parameters. 

Hence, introduce an artificial delay element with 
( )uωπτ 12/5=+ 8.7724/5 2, == uT . Again, the procedure 

started with a (symmetrical) on-off relay 200=B  yielding 
14.82

~~
,3.555~,1.3~

min1,1,1 ==== kkTA uu . Since min2,
~

1.1
~

kku =  

did not cause limit cycles, 7391.1~115
~

4.1
~

2min2, =⇒== Akku  
were taken for the saturation-relay test which gave 

8.597~,52.2~
2,2 == uTA . 

Solutions of the set (19) – (22) via various techniques are 
introduced in Table 1. The static gain value 0325.0=k  is 
fixed and the initial parameters estimation reads 

013.0/5.0 2,10 === uTaa , 7.136== ϑτ . 
 

TABLE 1 FREQUENCY-DOMAIN SOLUTION WITH SATURATION RELAY AND 
ARTIFICIAL DELAY (SIMULATIONS) 

 LM method NM method Excel Solver 

0a 210751567.1 −⋅  3109301645.9 −⋅  210422509.4 −⋅  

1a 31008719.9 −⋅−  3109951297.3 −⋅− 2104479.2 −⋅−  

τ  83.102  83.159  92.140  

ϑ  49.131  75.130  2.155  

e  21027.1 −⋅  201025.3 −⋅  41006.8 −⋅  

 
Note that NM algorithm and the MS Excel Solver minimize 

the sum of squares of the left-hand sides of (19) – (22), which 
agrees with error e  in the table. 

2) Time-domain solution 
Simulation experiment results from the preceding 

subchapter can be used for alternative, time-domain, solution 
of the relay identification problem given by the set (25) – (28). 
Again, the results are summed up in Table 2. 

 
TABLE 2 TIME-DOMAIN SOLUTION WITH SATURATION RELAY AND ARTIFICIAL 

DELAY (SIMULATIONS) 
 LM method NM method Excel Solver 

0a 3109301645.9 −⋅  3109301645.9 −⋅  3109301645.9 −⋅  

1a 3109951297.3 −⋅− 3109951297.3 −⋅− 3109951297.3 −⋅−

τ  83.159  83.159  83.159  

ϑ  75.130  75.130  75.130  
e  131082.1 −⋅  251038.3 −⋅  211011.2 −⋅  

 
Obviously, the three computational techniques provide 

(almost) the same results identical with that obtained by the 
frequency-domain solution via NM algorithm. 

3) Use of relay transient 
Finally, try to use the relay transient introduced in 

Subsection IV-A-c. Limit cycles from the experiment with on-
off relay were utilized. Exponential decaying function was 
chosen as ( )t01.0exp − , the sampling period for the DTFT was 
set to 1.00 =T  and the final time was taken as 2000=ft . 
These values give rise to discrete frequencies 

∈= lll ,0031.0ω N on which the DTFT is calculated and, 
subsequently, model parameters are estimated according to (9) 
– (11). 

For 1=l , ( ) j103348.3101139.1j 24
1 ⋅+⋅−=ωU , 

( ) j1697.20j 1 +=ωY  and ( ) ( )11 j/j ωω UY  

( ) 310j379.1924.1 −⋅−= . 

For 3=l , ( ) j1052541.210285243.1j 34
3 ⋅+⋅−=ωU , 

( ) j188.25208.11j 3 +=ωY  and ( ) ( )33 j/j ωω UY  

( ) 310j49819.08087.1 −⋅−−= . 
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Substituting these values into (10) for model (18), 
optimization techniques yield results introduced in Table 3. 

 
TABLE 3 SOLUTION BY THE USE OF THE RELAY TRANSIENT (SIMULATIONS) 
 LM method NM method Excel Solver 

0a 21006598277.3 −⋅ 21006598277.3 −⋅ 310410418.7 −⋅  

1a 2107487959.1 −⋅− 2107487959.1 −⋅− 310607269.2 −⋅−

τ  42.143  42.143  7.136  

ϑ  08.158  08.158  69.136  
e  141019.3 −⋅  151059.1 −⋅  81029.1 −⋅  
 
Thus, LM and NM techniques provided comparable results. 
4) Comparison of the results 

To sum up the relay experiment, results from Tables 1 – 3 
are compared via step responses and Nyquist plots of original 
and approximating models. Concurrently, the well-known 
Integral Squared Error (ISE) and Integral Squared Time Error 
(ISTE) criteria are calculated for step responses for the time 
range [ ]2000,0∈t  with the step 1.0=Δt , and Nyquist plots 
are assessed using the criterion 

 
( ) ( )∑ −=

i

iiNyq GGJ
ω

ωω  (29) 

 
where G  is the original model (15), G  means the 
approximating one (18) and iω  are discrete frequencies, here 

[ ]1.0,0∈ω  with 4
1 10−

− =−=Δ ii ωωω . 
 Figs. 6 and 7 provide a graphical comparison, whereas 

Table 4 gives criterial results. 
Results from Tables 1 – 3 are labelled as follows: 
 a) “Result 1” – NM from Table 1, all results from Table 2. 
 b) “Result 2” – LM from Table 1 
 c) “Result 3” – MS Excel Solver from Table 1 
 d) “Result 4” – LM and NM from Table 3 
 e) “Result 5” – MS Excel Solver from Table 3 
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Fig. 6 Step responses of the original model (15) vs. approximating models 
(18) via simulation relay-feedback test 
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Fig. 7 Nyquist plots of the original model (15) vs. approximating models (18) 
via simulation relay-feedback test 

 
TABLE 4 COMPARISON OF RELAY EXPERIMENTAL SIMULATION RESULTS 

Result ISEJ  ISTEJ  NyqJ   

Result 1 1.363 845.2 3.227 

Result 2 6.304 3704 4.475 

Result 3 1.795 1063.4 4.472 

Result 4 0.607 450.2 2.835 

Result 5 1.015 713.7 2.852 

 
As can be seen from Table 4, the use of the relay transient 

solved by the LM and NM methods gives the best result. 
Especially, the Nyquist curves of the original model and the 
approximating one obtained by this way almost coincide for 
low frequencies (up to the ultimate frequency). The time-
domain solution and the NM technique, generally, provide 
good approximation as well. 

B. Laboratory Appliance Measurements 
Let us use the relay test performed on the laboratory plant 

to identify parameters of model (18). A comparison of 
simulated and measured data from the relay test with a 
symmetrical and biased on-off relay, saturation relay and 
those with an artificial delay element are presented in Table 5. 

There emerges a problem of a shifted stationary component 
( 0y ) of limit cycles, see Fig. 8, here that is caused likely by 
process nonlinearity and nonsymmetrical dynamics of heating 
and cooling. It brings about inconveniencies mainly for the 
relay transient test since it is not clear whether to take 360 =y  
(i.e. the steady state before the entrance of a symmetrical relay 
output) or 38.350 =y  which is the arithmetical mean value of 
maximum and minimum outputs within the period of limit 
cycles. Both possibilities are benchmarked within the relay 
transient procedure below. 
 In the lights of simulation results, only time-domain a relay 
transient solutions have been calculated and the NM technique 
was used. 
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TABLE 5 COMPARISON OF SIMULATED AND MEASURED RELAY TESTS DATA 
Quantity Measured data Simulated data 

1A  [°C] 1.85 1.9975 

1,uT  [s] 377.9 364.8 

1,uk [W·°C-1] 137.65 127.48 

τ  [s] 129.6 136.7 

2,uk  [W·°C-1] 151.42 140.23 

2A  [°C] 1.32 1.426 

2A  [°C] 1.59 1.9245 

2,uT  [s] 380.6 373.4 

+τ  [s] 78.7 77.8 

1
~A  [°C] 2.72 3.1 

1,
~

uT  [s] 579.9 555.3 

1,
~

uk  [W·°C-1] 93.62 82.14 

2,
~

uk  [W·°C-1] 131.07 115 

2
~A  [°C] 2.55 2.52 

2
~A  [°C] 1.53 1.7391 

2,
~

uT  [s] 616.7 597.8 

 

 
Fig. 8 Step responses of the original model (15) vs. approximating models 
(18) via simulation relay-feedback test 

 
1) Time-domain solution 

Time-domain solution of limit cycles data via the NM 
method (starting from the initial parameters estimation 

013.0/5.0 2,10 === uTaa , 6.129== ϑτ ) is introduced in 
Table 6, where i  stands for the iteration step. The steps are 
chosen so that they provide substantially diverse model 
parameters estimations. Note that all parameters sets give 
stable models and 0325.0=k  is taken from a step response. 
 

TABLE 6 TIME DOMAIN SOLUTION VIA NM METHOD 
i  8 20 40 1800 

2
0 10−⋅a 1923.2  6926.1  5704.1  8155.3  

2
1 10−⋅a 7542.1−  0696.1−  5139.8−  6778.2−  

τ  71.137  59.134  45.134  88.78  

ϑ 71.137  34.139  84.139  55.132  

e  31004.1 −⋅ 51003.8 −⋅ 61056.3 −⋅ 331047.1 −⋅

ISEJ  96.95 5.601 0.321 2.291 

ISTEJ  82175 3341.2 183.85 1331.1 

 
Apparently, the estimation for 40=i  gives a better result 

than the converged one, see Fig. 9 for the comparison of step 
responses, that is comparable to the best simulated result (in 
Table 2). 

 

 
Fig. 9 Step responses comparison of measured data vs. relay based model 
using the time-domain solution 

 
2) Use of relay transient 

Consider now the use of the relay transient with the same 
settings as in Subchapter VI-A-3. Data for 360 =y  then 
(using the NM optimization) provide parameters estimations 
that mostly give unstable plant models (e.g. for 

1800,40,20=i ). Exceptional “stable” values are presented in 
Table 7. 

If it is considered that 38.350 =y , the NM method 
converges as well; however, almost all estimations give 
unstable models except for 12=i , with 3007063.00 =a , 

2233959.01 −=a , 15.157=τ , 79.101=ϑ , 31064.1 −⋅=e , 
165.16=ISEJ , 9900=ISTEJ . 

Step responses for the best results of both variants ( 360 =y  
vs. 38.350 =y ) compared to the measured response are 
pictured in Fig. 10. It seems that 360 =y  is a more suitable 
choice. 
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TABLE 7 RESULTS OF THE USE OF THE RELAY TRANSIENT WITH 360 =y  

i  8 20 

2
0 10−⋅a 3969.9  5768.5  

2
1 10−⋅a 9056.6−  1011.3−  

τ  95.177  2.165  

ϑ 17.158  21.145  
e  21009.1 −⋅ 31069.6 −⋅

ISEJ  324.28 4.002 

ISTEJ  26016 1591 
 

 
Fig. 10 Step responses comparison of measured data vs. relay based model 
using the relay transient 
 

3) Comparison of the results 
As it is clear from Figs. 9 and 10, the time-domain 

evaluation of limit cycles from on-off and saturation relay 
tests gives better plant model parameters estimations in 
comparison with the use of relay transient, although 
simulation benchmark has given rather different results. The 
letter methodology is sensitive to signal noise and the 
estimation of a stationary component of the signal. 

VIII. CONCLUSION 
Both the theoretical and practical aspects of (advanced) 

relay-feedback identification for (linear time-invariant) time 
delay systems have been presented in this paper. A 
methodology utilizing a simple on/off relay followed by the 
use of a relay with saturation and the philosophy of a relay 
transient has been used, and – what is a novelty – this 
approach is performed to time delay systems. A saturation 
relay and a relay transient with DTFT can improve model 
parameters estimation. Moreover, a relay transient can serve 
to multiple frequency points estimation. For a saturation relay, 
the ATV+ technique incorporating additional delay element in 
the loop has been utilized to solve this task. 

Limit cycles data have been then evaluated using a standard 

frequency-based approach and via an unusual methodology 
working on the functional differential equations in the time 
domain. 

The consequent example has demonstrated and proofed the 
usability of proposed methodologies on model parameters 
identification of a real (laboratory) system heating system with 
delays. Both, simulation and real-measurement results have 
been provided. While a relay transient provides the best 
simulation results, the practical implementation indicates the 
suitability of the use of a saturation relay with time-domain 
evaluation. 

In the future, the eventual models can be used to real-time 
control of the laboratory appliance for verification of several 
control algorithms for time delay systems.  
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